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This paper reflects on Dietrich Dörner's observation that
participants working on complex dynamic control tasks
exhibit a “tendency to economize”, that is, they tend to
minimize cognitive effort. This observation is interpreted
in terms of a dual processing approach; it is explored if the
reluctance to adopt Type 2 processing could be rooted in
biological energy saving. There is evidence that the en-
ergy available for the cortex at any point in time is quite
limited. Therefore, effortful thinking comes at the cost
of neglecting other cortical functions. The proposed dual
processing approach to complex problem solving is investi-
gated in an experiment where cognitive load was varied by
means of a secondary task to make Type 1 or Type 2 pro-
cessing more likely. Results show that cognitive load had
no effect on target achievement and knowledge acquisi-
tion. Even in the single task condition, many participants
seem to prefer Type 1 processing, supporting Dörner's
observation.
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Progress in an area of research is stimulated by dis-
coveries and new theories. In the area of complex
problem solving (CPS), where the handling of uncer-
tain and dynamic situations is investigated1 , both are
scarce. As for discoveries, one can even doubt if there
were any. One candidate for both is Dörner’s (1996)
observation that failure in the process of CPS follows
a certain logic, with the features of complex problems
and the limitations of human thinking as premises.
For example, problem solvers often focus on a central
variable, to which they attribute too much explanatory
power (e.g., job satisfaction in an economic scenario).
The resulting failure, based on the neglect of other
important variables, can be deduced from the con-
junction of a tendency to economize thinking (Dörner,
1996) on the side of the problem solver, and the fea-
ture of complexity and connectedness on the side of the
problem. A virtue of Dörner’s conception is its com-
prehensiveness: He fruitfully brought together ideas
from very different sources.

Because (complex) problem solving is a vast research
topic, which intersects with many established areas
of psychology, such as memory, decision-making, mo-
tivation, or judgement, I am convinced that only a
comprehensive, holistic approach can yield progress.
In the present paper, I pick up Dörner’s concept of
the tendency to economize, connect it with the idea

of dual processing, and explore what predictions can
be derived from this. For this purpose, the dual pro-
cessing approach is contrasted with the current “stan-
dard model of CPS” (Fischer, Greiff, & Funke, 2012;
Schoppek & Fischer, 2017) by means of an exploratory
experiment, which is in part replicated in a second ex-
periment.

Kahneman (2011) called the human judge (or prob-
lem solver) a “cognitive miser” – a person who mostly
relies on intuitive judgement and uses reasoning spar-
ingly. Kahneman assigns intuitive judgment to “Sys-
tem 1” and thinking to “System 2” (see below). The
resemblance of cognitive miserliness to the tendency to
economize establishes a connection between Dörner’s
idea and dual processing theories: The tendency to
economize consists of a strong preference for System 1
and reluctant use of System 2.

Conceptual preliminaries

Some terms in problem solving research are used with
varying meanings. Therefore, before the presentation
of the research questions I shall define the core con-
cepts.

I use the term “complex problem solving” in the
tradition of Dörner (1996) for human goal-directed ac-
tivities in situations which are characterized by a rel-
atively large number of relevant variables (complex-
ity), which influence each other in various ways (con-
nectedness), and some of which change their values
autonomously (dynamics). The problem solver nei-
ther knows exactly what variables are relevant, nor
knows all current values (intransparency). In such sit-
uations, more than one goal can be reasonably pur-
sued, whereby the goals typically cannot be maximized
at the same time (polytely). This definition has been
criticized for lacking precision and operationalization
(e.g. Quesada et al., 2005). However, in problem solv-
ing research it is widely accepted that it depends on
the knowledge of the problem solver whether a task
can be classified as a problem or not (Öllinger, 2017).
Similarly, CPS research situations can be more or less
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typical for a “complex problem”. In my opinion, the fo-
cus should be on the processes on the side of the prob-
lem solver; and insights about these do not depend on
the exact classification of the problem. For the prob-
lems that persons are asked to solve, I often use the
term “complex dynamic control (CDC) tasks”. This
term originates in the literature on technical process
control (e.g., Woods et al., 1990), and many authors
use it (e.g., Osman, 2010; Davis et al., 2020).

In cognitive psychology, the term “strategy” is often
used generally for any course of action or sequence of
cognitive processes. In its original (military) context, a
strategy is an abstract approach to a problem, which
needs to be substantiated in real situations (Clause-
witz, 1832/1991). If a course of action can be imple-
mented directly, it is a tactic rather than a strategy.
A tactic is a relatively concrete procedure. With this
terminology, much that is referred to as strategy could
be more precisely be called a tactic. I shall discuss a
last problematic term, “intuition”, after a short intro-
duction to the basic concepts of the dual processing
approach.

The dual processing account for human
thinking, decision making, and problem
solving

The core proposition of the dual processing (DP) ac-
count is that there are two modes (or types) of in-
formation processing, which differ in their character-
istics, which work in parallel, and which may come to
different conclusions about the given information. For
example, in view of a piece of cake, Type 1 processes
may quickly raise the impulse of eating it, whereas
Type 2 processes may involve the recollection of an in-
tention to lose weight and mobilize resistance against
the temptation. Initially, the two modes of processing
were described as systems with characteristic features.
For example, System 1 typically works fast, parallel,
automatic, and modality specific; in contrast, System
2 is described as being slow, serial, controlled, and
flexible (Evans, 2008).

The problem with these characterizations is that
they are neither sufficient nor necessary. It is sim-
ply not true that all information processing that is
slow, is also serial, controlled, and flexible. In addi-
tion, it is unlikely that there are exactly two systems
for processing information. Particularly the processes
that are assigned to System 1 (e.g., pattern recogni-
tion, procedural knowledge) are too diverse as to sub-
sume them under a unitary system. Therefore, the
characterization as two systems was abandoned, and
newer conceptions classify processes as belonging to
two types of processing. According to Stanovich and
Toplak (2012), the defining feature of Type 1 processes
is their autonomy: “The execution of Type 1 processes
is mandatory when their triggering stimuli are encoun-
tered, and they are not dependent on input from high-
level control systems” (p. 7). Likewise, the central fea-
ture of Type 2 processes is the function of decoupling

representations created by hypothetical reasoning and
representations of the real world (ibid.). Evans (2012)
assigns working memory a critical role for that func-
tion. Taken together, Type 2 processes largely overlap
with the contemporary conception of executive func-
tions (Diamond, 2013): working memory, inhibitory
control, and cognitive flexibility.

Previous approaches for explaining CPS behavior

How can extant approaches for explaining CPS behav-
ior be located in the framework of DP? Some of them
describe problem solving behavior in terms of Type
1 processing. Broadbent, Fitzgerald, and Broadbent
(1986) found that participants who successfully con-
trolled simple dynamic systems (e.g., the sugar pro-
duction task, viz. Sugar Factory) were not able to
answer questions about the causal structure of the
systems correctly. They were also not able to pre-
dict what effects given input values have on the target
variables. From this, Broadbent et al. concluded that
participants have learned to control the systems by us-
ing a mental “lookup table”. Dienes and Fahey (1995)
followed up on these considerations and showed that a
model based on Logan’s (1988) instance theory could
replicate most of the empirical findings unless the sys-
tem’s behavior was governed by a highly salient rule.
In that case, a rule-based model made the best pre-
dictions. Buchner, Funke, and Berry (1995) offered
a different explanation for the negative correlations
between verbalizable knowledge and control perfor-
mance. Participants who encountered a greater va-
riety of system states had a good chance of answering
the knowledge questions correctly but were obviously
not successful in reaching the targets (because suc-
cess meant that the system states did not vary much
around the target state). In an additional experiment,
however, Dienes and Fahey (1998) found stochastic
independence between repeating successful inputs in
situations previously encountered and recognition of
these situations as known. This corroborates Broad-
bent et al.’s (1986) assumption that the relevant knowl-
edge for controlling these systems is learnt and known
implicitly. Implicit learning can clearly be identified
as Type 1 process (Evans & Stanovich, 2013; Sun,
Slusarz, & Terry, 2005). In contrast, the rule-based
model relies primarily on Type 2 processing.

Taatgen and Wallach (2002), as well as Fum and
Stocco (2003) presented ACT-R models that simu-
lated the learning process in the Sugar Factory. The
former model relies on declarative memory of known
input-output sequences and assumes a partial match-
ing mechanism; the latter model uses learning of pro-
cedural parameters. Although ACT-R differs from Lo-
gan’s instance theory, and both models differ from each
other, they simulate implicit learning rather than ex-
plicit rule learning.

Osman, Glass, and Hola (2015) presented a model of
CPS that is based on reinforcement learning (SLIDER
model – Single Limited Input, Dynamic Exploratory
Responses). This type of learning is also a process of
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Type 1. However, the system in that research devi-
ates from those that are commonly used in CPS re-
search (such as MicroDYN, Tailorshop, or Dynamis2):
It has only one output variable that depends linearly
on two input variables; a third input variable has no ef-
fect. Paradoxically, Osman and colleagues report next
to nothing about the fitting procedure and the per-
formance of their model. Anyhow, it is obvious that
a system with one output variable lends itself more
readily to reinforcement-based control than a system
with more output variables. This is because in systems
with only one output variable no side effects are pos-
sible (additional effects of an input variable to other
than the targeted output variable). The presence of
side effects often requires sophisticated input tactics,
which involve considerations about how fixed vs. free
the input variables are. For example, if one target vari-
able can only be controlled by a single input variable,
the latter is relatively fixed and cannot easily be used
to control another target variable. (This extends the
concept of controllability according to Beckmann and
Goode, 2017, who focused on the number of dependen-
cies of an output variable, with the number of effects
of an input variable). The proof that more complex
systems can be controlled based on pure reinforcement
learning is still outstanding.

In his own framework (Schoppek, 2002; Schoppek et
al., 2017), the author has used the term “I-O knowl-
edge” (input-output knowledge) for declarative knowl-
edge about input values and their specific effects. This
conception was inspired by the ACT-R cognitive archi-
tecture (Anderson & Lebiere, 1998), which does not
go well together with a DP approach. Nevertheless,
some aspects of ACT-R can be classified as Type 1
processes, for example, the learning rules that govern
parameter changes on the subsymbolic level, or proce-
dural learning.

So far, I have presented explanations for complex
problem solving behavior that can largely be assigned
to Type 1 processing. We now turn to explanations
that are primarily based on Type 2 processing. The
most prominent proponent is the model that has been
developed in the context of the “multiple complex sys-
tems” approach (Greiff, Wüstenberg, & Funke, 2012).
The model assumes that problem solvers first try to
detect the causal structure of a system. The success
of this phase of problem solving depends on the use
of appropriate strategies such as VOTAT (“vary one
thing at a time”; Tschirgi, 1980; Vollmeyer, Burns,
& Holyoak, 1996). After that, problem solvers try to
reach goal states using the knowledge they have ac-
quired in the first phase. Many studies involving mul-
tiple complex systems such as MicroDYN (Greiff et
al., 2012), or MicroFIN (Neubert et al., 2015) adopted
that model, referring to the first phase as knowledge
acquisition, and to the second phase as knowledge ap-
plication (Fischer, Greiff, & Funke, 2012; Greiff &
Funke, 2009; Greiff et al., 2013; Kretzschmar & Süß,
2015; Wüstenberg et al., 2012). In most of those
studies, CPS competency is measured as a construct
comprising these two correlated, yet discriminable di-

mensions. Due to the prevalence of that model, we
have introduced the name “standard model of CPS”
(Schoppek & Fischer, 2017, 2) for it. Note, how-
ever, that in some studies a 1-dimensional measure-
ment model fitted at least equally well (Kretzschmar
et al., 2017).

The knowledge acquisition process is mainly char-
acterized by induction: From observations of the sys-
tem’s responses to certain inputs, the problem solver
induces causal relations among variables. Knowledge
application involves deductive processes in addition:
From the induced rules, the problem solver deduces
a sequence of actions to be taken in order to reach
the desired goal state. Admittedly, this is a strong
simplification of the real processes going on during
CPS. However, it demonstrates the similarity between
the processes assumed in the standard model of CPS
and the induction-deduction cycle that is characteris-
tic for many problems used in intelligence tests (Hunt,
2010). Therefore, it is coherent that the performance
in controlling simple systems (as used in MicroDYN) is
closely correlated with measures of intelligence (Greiff
et al., 2013; Stadler et al., 2015). The assignment of
these processes to Type 2 is justified by their high de-
mands on working memory.

This synopsis shows that dual processing ideas are
hidden in theorizing about complex problem solving,
but that the pertinent assumptions are not combined
within one framework. A subtle hint in that direction
can be found in the abstract of the Broadbent et al.
(1986) paper: “The results challenge a common view
of the discrepancy between performance and verbal
accounts, and suggest rather that there are alterna-
tive modes of processing in human decision making,
each mode having its own advantages” (p.33). How-
ever, this idea has not been picked up in subsequent
research. To my knowledge, there is no published at-
tempt to combine both accounts for the topic of CPS.

The tendency to economize and related
concepts

Dietrich Dörner observed in many studies that par-
ticipants minimized cognitive effort (Dörner, 1980,
1996; Dörner & Schaub, 1994). For example, problem
solvers tend to identify a central variable in a com-
plex system and hypothesize that many other quanti-
ties almost exclusively depend on it. (In the minds of
many people today such a variable might be “uncon-
trolled immigration”. This way of thinking may also
contribute to the development and adoption of con-
spiracy theories). Dörner (1996) attributes these and
some other shortcomings of human decision-making in
complex situations to the slowness of human think-
ing (of Type 2) and has coined the term “tendency
to economize” (Ökonomietendenz). In everyday lan-
guage, one would say people are lazy-minded.

Other researchers have also observed that humans
deploy Type 2 processing sparsely or reluctantly. Her-
bert Simon broached the issue of the narrowness of
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human cognition and observed that persons tend to
“satisfice” instead of optimizing (Barnard & Simon,
1947). This is due, among other things, to the inher-
ent uncertainty of induction, but also to the limited
capacity of the reasoning apparatus (Simon, 1993).
The concept of satisficing, i.e., making decisions based
on simple criteria, takes into account these limitations
and is thus related to the tendency to economize.

The heuristics and biases program (Kahneman,
Slovic, & Tversky, 1982) was another important field
of study with strong relations to the tendency to econ-
omize. Several authors demonstrated in many ex-
periments that human judgement is guided by simple
heuristics, which often lead to wrong conclusions. This
program is so well known that it is unnecessary to go
into details here. Kahneman (2011) interprets these
earlier findings in terms of a DP framework now.

Gigerenzer and Brighton (2011) in their ABC pro-
gram (adaptive behavior and cognition) gave the topic
a different twist: This group investigated how peo-
ple use heuristics to make good decisions (Gigerenzer,
Hertwig, & Pachur, 2016). They postulate that simple
rules of thumb rely on the results of basic skills that
have been developed through evolution (“evolved ca-
pacities”). As an example, the authors often describe
the gaze heuristic. When the goal is to hit a mov-
ing object, such as a ball to be caught, one moves so
that the angle of view to the object is constant. The
perception of the angle of view is provided by the per-
ception system, and the rule of keeping it constant is
simple. Although Gigerenzer is decidedly opposed to
the DP approach (Kruglanski & Gigerenzer, 2011), his
conception fits well into this framework: The evolved
capacities can be classified as Type 1 processing and
the rules of thumb as Type 2. Through their simplic-
ity, the latter take the limited capacity of System 2
into account.

In this context, it is important to clarify the mean-
ing of intuition and its role in CPS. Kahneman (2011)
classified Type 1 processing as intuitive. Gobet and
Chassy (2009) define intuition as “the rapid under-
standing shown by individuals, typically experts, when
they face a problem” (p. 151). Other characteristics
are the “essential role of perception, the fluid, automa-
tized, and rapid behavior characteristic [. . . ], and the
long time required to become an expert” (p. 172).
This characterization is compatible with Kahneman’s,
even though these authors are not advocating a DP
approach. However, Gobet and Chassy’s (2009) com-
putational model of expert problem solving in chess,
which incorporates intuitive and analytic components
and their interplay, is a valuable example of how dual
processing ideas can be stated more precisely in cog-
nitive models.

The emphasis on experts points to the problem that
intuition can refer to different processes, depending on
the amount of experience and practice of the respec-
tive person. While I mostly agree with the conception
of Gobet and Chassy (2009), I do not assign intuition
to experts alone. Persons with little experience in a
domain can also have intuitions about the nature of

the problem or about a certain course of action, be-
cause of perceived similarities with familiar situations
(Schoppek, 2019). In such cases, the intuitions will
more likely be misleading than in the case of experts.

Beckmann (2019) warned not to use “intuition” as a
pseudo-explanation for behaviors that cannot be clas-
sified as specific strategies. To be precise in that re-
spect, I use the term “intuitive approach” for problem
solving behavior that is characterized by rather un-
systematic trial and error and the attempt to reach
goals by gradually adapting an input tactic (see also
Beckmann & Goode, 2017).

Why do humans deploy Type 2 processing so
sparsely?

A potential explanation for cognitive miserliness is the
energy demand required by Type 2 processes. Re-
searchers in rich western industrial societies tend to
forget that the abundant supply with calories they ex-
perience today was not given during the time when
homo sapiens appeared during evolution. Therefore,
it seems plausible that the large frontal lobes that
are characteristic of humans should be energized only
when necessary (Baumeister & Thierney, 2011). The
problem with this account is that the human brain
consumes about 20% of the energy available in the
blood almost independently from its specific activity
(Fox & Raichle, 2007). The pattern of activity that
can be observed during rest or daydreaming forms a
“default mode network” (Raichle, 2015). Its activity
ceases when the participant engages in specific cogni-
tive tasks. At the same time, activity in other regions,
the “task positive network” (TPN), increases (Basten,
Stelzel, & Fiebach, 2013). This suggests that energy
expenditure shifts rather than rises during thinking.
Although the exact energy regime in the brain is still
a matter of lively debate (Howarth, Gleeson, & Atwell,
2012; de Boeck & Kovacs, 2020), we can state that the
view that homo sapiens uses thinking sparingly to save
energy is too simple.

Nevertheless, research on individual differences in
cognitive functioning also considers energetic factors.
Debatin (2019) reviewed a number of studies that ad-
dressed the relation between glucometabolic function
and cognitive performance and concludes that “there
is an increasing amount of research supporting the
hypothesis that individuals with better glucose reg-
ulation perform better in cognitive performance tasks
than individuals with worse glucose regulation” (De-
batin, 2019, p. 4; see also Lamport et al., 2009). How-
ever, most research in this area has focused on the role
of glucose as substrate for oxidative phosphorylation,
which is not the only way of providing energy in the
body. An additional way, aerobic glycolysis, has re-
ceived much less attention (Vaishnavi et al., 2010), so
that the view on these questions may change in the
near future.

Taking up the idea of “shifting rather than rising
energy expenditure” again and combining it with the
fact of limited energy supply in the brain, one might
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speculate that Type 2 processing can only occur at
the cost of other cortical processing. As these other
processes might be essential for survival (e.g., scan-
ning the ambience visually and/or aurally), selection
pressure may have acted on excessive thinking during
evolution. This speculation is compatible with calcu-
lations of the energy demand of neurons in the cortex
on a molecular level, which gave rise to the assump-
tion that the maximally available energy in the brain
severely limits neuronal activity (Lennie, 2003). How-
ever, newer calculations showed that action potentials
demand much less energy than previously assumed,
and that a good part of energy in the brain is used for
functions that are independent of acute signaling, such
as maintaining resting potentials or neurotransmitter
recycling (Howarth et al., 2012). Although these mod-
ifications attenuate Lennie’s (2003) original argument,
they do not rule out the above speculation.

It is generally problematic to draw inferences be-
tween different levels of abstraction (Kästner, 2018;
Newell, 1994), even more when the evidence on the
biological level is vast and controversial. However,
psychological theories should be consistent with bio-
logical evidence, and the latter can help inspire the
former through generating new hypotheses. In the
case of the tendency to economize a glimpse into the
neurosciences showed that the discussions there about
energy expenditure in the brain justify a possible con-
nection with modes of thinking.

Predictions of the DP account

Dual processing accounts have been criticized for not
being able to make predictions (Keren & Schul, 2009).
However, with the recent specifications (see above), I
venture on some predictions in the area of complex
problem solving. Obviously, all cognitive processing
involves Type 1 and Type 2 portions to different de-
grees. Therefore, in the following statements, I use
“Type x processing” as shorthand term for “process-
ing that is predominantly characterized as Type x” –
just for the sake of readability.

For making predictions, we need to identify espe-
cially the broad range of Type 1 processes. Candi-
dates are pattern recognition, incidental learning, im-
plicit learning resulting in implicit knowledge (includ-
ing specialized procedural knowledge).

In complex dynamic control tasks, Type 1 processes
perform the following functions. The list is not in-
tended to be complete. When performed with little
or no practice, some of the functions might also be
classified as Type 2.

1. Recognition of system states
2. Recognition of system developments or temporal

patterns
3. Input response on recognized system states
4. Unsystematic exploration (trial and error – can

be useful under certain circumstances, e.g., finite
state automata)

5. Buildup of I-O knowledge
6. Execution of automatized action sequences

The following functions are governed mainly by
Type 2 processes:

1. Systematic exploration of a dynamic system to
acquire structural knowledge (e.g., using VOTAT)

2. Construction of a strategy for exploration
3. Calculation of an intervention based on structural

knowledge
4. Construction of input tactics (what variables to

manipulate in what order)
5. Keeping the focus on the problem when difficulties

arise
6. Remembering to check background variables

When we combine the classifications above with the
propositions of the DP account, we arrive at following
predictions about (complex) problem solving:

1. When confronted with a problem, most persons
initially tackle it with a high proportion of Type
1 processes such as unsystematic exploration.

2. Learning to control a novel complex dynamic sys-
tem requires Type 2 processing. If central ex-
ecutive capacity is bound by other requirements,
problem solving performance declines.

3. Working with ample use of Type 2 processing is
not very common. It usually needs a consider-
able incentive such as sustaining a threatened self-
esteem, feelings of challenge, or large extrinsic in-
centives (Liddle et al., 2011).

4. Advanced problem solvers have exploration
strategies in their repertoire (e.g., VOTAT) and
can execute those largely in Type 1 mode (with-
out overloading their working memory).

5. Extensive practice with a specific system leads to
automatization, meaning the demand for Type 2
processing decreases.

6. After transition to Type 1 processing, it is difficult
to detect changes in the system and respond to
them appropriately (Luchins, 1942; Betsch et al.,
2001).

7. The difficulty of a problem correlates predomi-
nantly with its requirement for Type 2 process-
ing (Stanovich & West, 1999). However, individ-
ual differences in experience, which are reflected
in implicit knowledge (Type 1), may override the
correlation (Ackerman, 1990; Weise et al., 2020).

Predictions 1 and 3, and less obviously, prediction
6, are instances of the tendency to economize. Pre-
diction 2 is based on considerations around the stan-
dard model of CPS (see section “extant approaches”).
Other predictions rest on established theories of cog-
nitive skill acquisition and automatization (Anderson
et al., 1997; Norman & Shallice, 1986).
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Dual processing in Dynamis2

These considerations shall now be applied to a new
variant of a dynamic problem solving environment,
called Dynamis2 (Schoppek & Fischer, 2017). Inspired
by Allen Newell (1973), who summoned his colleagues
in cognitive science at the time: “Analyze a complex
task” (p.21) and “know the method your subject is us-
ing to perform the experimental task” (p.12), I present
a detailed description of a typical problem within this
environment together with possible strategies2 .

In the complex dynamic control task environment
Dynamis2 (Schoppek & Fischer, 2017) systems are
simulated using sets of linear equations. Output vari-
ables (aka endogeneous variables) depend on the values
of input variables (aka exogeneous variables), which
are controlled by the problem solver, and on each
other, including themselves. This idea is based on
Funke’s (1993) Dynamis approach, which is also re-
alized in MicroDYN (Greiff, et al., 2012). One impor-
tant feature of Dynamis2 is that it is real-time driven:
The simulation is updated every half second, regard-
less of whether the participant manipulates the input
variables or not. This makes the dynamics of the sim-
ulated systems more rigorous than in most other CPS
environments and results in genuine time pressure for
the participants. A typical run of the system consists
of 250 simulation updates (called cycles), which rep-
resent a round. An experimental block in Dynamis2
comprises one exploration round, where participants
can freely vary the input variables without a specific
goal state, followed by several rounds where partic-
ipants are required to reach goal states provided by
the experimenter. Figure 1 shows a screenshot of the
user interface.

The following equations constitute an exemplary
system that simulates the effect of three drugs (MedA,
MedB, MedC), administered continuously (as if from
a drip), on three blood levels of three substances
(Muron, Fontin, Sugon). All variables and their re-
lationships are fictitious in order to minimize prior
knowledge influences. However, the course of the
blood levels is plausible.

Muront = 0.1 · Muront-1 + 2 · MedAt-1

Fontint = Fontint-1 + 0.5 · Muront-1 − 0.2 ·
Sugont-1 + MedBt-1

Sugont = 0.9 · Sugont-1 + MedCt-1

The effects of the output variables on themselves re-
sult in an eigendynamic (or momentum) that is more
pronounced the higher the coefficient is. For exam-
ple, Muron’s level, with an eigendynamic coefficient of
0.1, responds quickly to the administration of MedA,
whereas Sugon reaches a stable level only slowly, given
a constant input of MedC. Fontin, having the coef-
ficient one, tends to accumulate, which can only be
prevented by a certain level of Sugon.

The characteristics of the system have implications
for all possible control strategies, regardless of being
based on Type 1 or Type 2 processing: As Muron can

only be controlled with MedA, and also has a positive
effect on Fontin, the latter must be prevented from
increasing steadily. This can only be achieved using
MedC. MedC raises the level of Sugon, which in turn
decreases Fontin. However, as the effect of MedC on
Sugon unfolds slowly, it is almost impossible to control
the level of Fontin by varying MedC. A straightforward
strategy for reaching and maintaining the goal state
is to keep MedC constant at a certain level (e.g., 25),
wait until Sugon levels off, and eventually use MedB to
raise Fontin to the desired level. Additionally, MedA
needs to be set to 45 at some time during this process
to reach the goal of Muron=100. Of course, other
strategies are possible, but it is important to recap
that using MedC for a fine tuning of Fontin is adverse.

A participant who conforms to the standard model
would start exploring the system by varying the three
input variables one at a time (VOTAT). To detect the
eigendynamics of the output variables, she should ap-
ply a PULSE tactic (Schoppek & Fischer, 2017) that
consists of setting an input variable to a positive value,
then back to zero, and observe the course of the output
variables. From her observations, the participant can
induce all causal relations that constitute the system.
When it comes to targeted control, the participant
can use her structural knowledge to develop a con-
trol strategy and deduce specific input values. From
this description, it is obvious that such an approach
involves inferential reasoning, which puts a heavy load
on working memory and can be characterized as Type
2 processing.

On the other hand, what can a participant who
takes an intuitive approach learn? He notices early
that Muron can only be controlled with MedA. He
will also notice that Fontin tends to increase. Because
Fontin shall be kept at 1000, he will search for a means
to prevent Fontin from growing. Eventually, he will
find out that only MedC does that. This participant
has gained rudimentary structural knowledge, which
he uses to control the system: He will set MedA to the
value that brings (and keeps) Muron to 100 (this can
be accomplished by visuomotor closed-loop control).
Then he tries to control Fontin by adjusting MedC.
As Fontin responds to changes in MedC only gradu-
ally, this strategy rarely succeeds. I will refer to this
as “Strategy Gamma”.

This procedure mainly consists of visuomotor
closed-loop control: Doing something – watching – ad-
justing, which is a Type 1 process. Beckmann and
Goode (2017) called this “ad-hoc optimization” (see
also Beckmann & Guthke, 1995). Occasionally, the
participant must draw some inferences from the ob-
served: Noticing and considering that only MedA af-
fects Muron, that only MedC limits Fontin. These are
Type 2 processes.

A little more reasoning could lead our participant
to the conclusion that MedC should be kept constant

2This unusual description of the material in the introduction is
due to the theoretical nature of analyzing the strategies, which
readers cannot understand unless they know the problem.
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Figure 1. Screenshot of the user interface of a Dynamis2 scenario. The lines represent the course of the output variables. Fontin is
displayed in a separate panel because of its range being larger than the ranges of the other variables. The current values of the input
variables are listed in the top left corner (MedA . . . MedC), those of the output variables in the bottom left corner.

to prevent Fontin from fluctuating in a delayed man-
ner. He will notice that Fontin responds much quicker
to MedB and uses this Medicine to fine-tune Fontin.
This feasible strategy gets by with rudimentary struc-
tural knowledge and hence deviates considerably from
the standard model. I shall label this strategy, which
is characterized by low variation of Med A and Med
C, and higher variation of Med B, “Strategy Beta”.
Compared to Strategy Gamma, the development of
Strategy Beta involves a higher share of Type 2 pro-
cessing. To make the strategy classification complete,
I introduce a third strategy “Alpha”, where all input
variables are varied. Strategy Alpha is characteristic
for early exploration phases.

Experiment 1

The purpose of this experiment was to challenge the
standard model of CPS. This means most hypotheses
were formulated under the assumption that the stan-
dard model was valid. By varying the presence of a
secondary task, intended to increase the burden on
working memory, the propensity to adopt a standard
or intuitive approach should be manipulated. The
secondary task was sentence verification, which has
proved its utility in the context of measuring work-

ing memory capacity (Daneman & Carpenter, 1980;
Unsworth et al., 2009). Adding working memory load
should make the use of working memory intensive
strategies less likely. In terms of the DP framework,
this should disturb Type 2 processing, leading to a
greater proportion of Type 1 processing.

It is not realistic to expect that all participants con-
form to a certain model (standard model, intuitive
model). Also, the proportion of using either type of
processing cannot be measured directly. Therefore, I
started with the working hypothesis that most partic-
ipants conformed to the standard model of CPS. From
this, one can derive testable hypotheses: Under the as-
sumption that the standard model was true, I expected
that participants in the dual task condition – as com-
pared to the single task condition – perform worse and
gain less structural knowledge. Additional and more
specific hypotheses are listed after the description of
details of the experiment.

Materials and measures

As complex dynamic control tasks, three Dynamis2
systems were used. The rationale of Dynamis2 and
the first system was described in the introduction. The
equations of the other two problems are listed in the
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appendix. A distinctive feature of the present study
was that I used a board with three physical sliders as
input device. This should enable participants to con-
trol the system in an intuitive, sensory-motor style.
Because the sliders are resting in their positions un-
less the user moves them, the same applies to the input
values. In the beginning of the experiment, the sliders
were in their minimum position (zero). Negative input
values were not possible. One round consisted of 250
cycles with 0.5 s each, resulting in a total time of 2
min and 5 s.

Control performance was measured by the number
of rounds each participant took to reach the crite-
rion (variable “trials to criterion”). The criterion was
reaching the targets and keeping them for ten cycles
in two consecutive rounds. As the number of rounds
was limited to 15, some participants did not reach the
criterion. Their performance was coded as 16.

Participants in the dual task condition were asked
to do a sentence verification task concurrently with
system control. A female voice spoke sentences that
were either meaningful or not. In the first case, partic-
ipants were to respond by saying “yes”, in the second
case by speaking “no”. For example, a meaningful sen-
tence was “Oranges grow on trees”, an absurd sentence
was “Litter goes into the litter nose”. There were 25
sentences during one round – one sentence every five
seconds on average.

After each exploration round, participants were
asked to enter the effects they had inferred as arrows
into a diagram that showed the variables of the sys-
tem. From this, a structural score was calculated as
the difference between the numbers of correctly and
wrongly marked effects.

Additionally, I carried out exploratory analyses of
the strategies. The associated definitions are described
in a separate section “strategies” under results.

Design and Procedure

Two factors were varied between subjects and one fac-
tor was varied within subjects. In the dual task con-
dition (DT), participants had to do the sentence ver-
ification task while controlling the Dynamis2 system
Medicine 1. There was also a single task condition
(ST) without the verification task. The single vs. dual
task factor was varied in the first block only to avoid
overburdening the participants with a continued dual
task requirement. All blocks began with a free explo-
ration round without given goal states.

The second factor consisted in a variation of the se-
quence in which the Dynamis2 systems had to be con-
trolled. Both conditions started with a specific goal
state for the system Medicine 1 (Muron = 100, Fontin
= 1000). In the blocked condition, participants con-
tinued with a task consisting of a changed goal state
for the same system (Muron = 80, Fontin = 1500;
near transfer) followed by a new system (Medicine 2,
Bulmin = 1000, Grilon = 80; far transfer). In the
spaced condition, the order of transfer problems was
reversed (far transfer first, then near transfer). Hence,

participants in the blocked condition had more expe-
rience with the task environment before turning to
Medicine 2 than participants in the spaced condition.
In both conditions the session ended with a third sys-
tem (growing vegetables), which is not reported here.
The different tasks can be viewed as a third factor
that was varied within subjects. Figure 2 shows the
sequence of tasks in the different conditions.

Participants

Seventy-three persons participated in the experiment:
42 women and 31 men. Participants were studying
different majors (32 economics, business administra-
tion or law, 16 humanities or social sciences, and 20
sciences, five did not provide the information) at a
German University. Participants provided informed
consent and all procedures followed the principles of
the Declaration of Helsinki.

Hypotheses

Hypothesis 1.1: Participants in the ST condition take
fewer rounds for reaching the goal criterion in the
source problem and in the near transfer problem than
those in the DT condition.

Hypothesis 1.2: Participants in the ST condition
acquire better structural knowledge about the source
problem than those in the DT condition.

Hypothesis 1.3: Structural knowledge and problem
solving success are correlated positively, particularly
in the ST condition.

Hypothesis 1.4: The use of the PULSE tactic in the
first two rounds is predictive for (a) structural knowl-
edge and for (b) success, particularly in the ST condi-
tion.

Hypothesis 1.5: Participants solve the far transfer
problem faster in the blocked condition than in the
spaced condition.

As described above, the hypotheses are based on
the working hypothesis that the standard model of
CPS with its emphasis on acquisition and application
of structural knowledge is an adequate description of
CPS. Hypothesis 1.4 was formulated as a replication
of results found in an earlier experiment (Schoppek &
Fischer, 2017). The PULSE tactic involves systematic
setting back of input values to zero in order to observe
the eigendynamics of output variables and has been
shown to predict success in several complex dynamic
control tasks (Beckmann, 1994; Lotz et al., 2017).

Hypothesis 1.5 is based on the fact that participants
in the blocked condition have a second opportunity
to work with the same system. The original consid-
eration was that this enabled participants to further
analyze the causal structure of the system they al-
ready know. During this opportunity, they can ac-
quire strategic knowledge about exploration of a sys-
tem, which they can transfer to the new system (far
transfer). This effect should be most prominent in the
DT condition, because the secondary task is omitted
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Figure 2. Diagram of the experimental design. G1, G2: different goal states; ST: single task, DT: dual task; KnowlT1: structural
knowledge test for Medicine 1.

in the near transfer problem, which makes the sec-
ond opportunity more profitable in the DT condition.
At first glance, this prediction seems to contradict the
standard model with its focus on structural knowledge
(which cannot be transferred to the far transfer prob-
lem). However, the standard model does not state
that structural knowledge is the only relevant type of
knowledge and therefore does not preclude the acqui-
sition of strategic knowledge. Additionally, the hy-
pothesis refers to a less specific effect of cognitive load,
which is reduced in the second block of Medicine 1 due
to increased familiarity (van Merriënboer, 1997). This
effect pertains to a reduction of extraneous load (han-
dling the task environment) and intrinsic load (reach-
ing the goals), resulting in more resources for learning
any kind of knowledge or skills (germane load).

Apart from testing the hypotheses, I will report re-
sults about differences between participants studying
certain subjects, and detailed analyses about the use
of strategies and their relation to control performance.

In an a priori power analysis, the expectation was
that effects of d = 0.65 (medium) should be detected
by a one tailed t-test with a power of 1 − β = .85
and a significance level of α = .05. This resulted in a
sample size of n = 35 per condition. As it turned out
that some of the variables markedly differed from the
normal distribution, nonparametric tests were applied,
the power of which is a little lower than the t-test’s.
Post hoc, the power of the one tailed t-tests with the
present sample is 1 − β = .87, for the U-tests it is
1 − β = .85. All power analyses were conducted using
the software G-Power (Faul et al., 2009).

Results

The results are presented in two sections. First, I re-
port the analyses for testing the hypotheses. In a sec-
ond part, I report some exploratory analyses that can
support the interpretation of results or can be used to
generate new hypotheses.

Testing the hypotheses

Table 1 shows descriptive statistics for the main vari-
ables. We see that the scenario Medicine 1 was a dif-

ficult problem. Many participants did not reach the
goal criterion in 15 rounds (coded as 16). The sce-
nario Medicine 2 was much easier. The range from 3
to 13 trials to criterion indicates that all participants
reached the goals. It is very unlikely that this marked
difference between the scenarios is only due to practice,
because one half of the sample (the spaced condition)
worked on Medicine 2 before they repeated Medicine
1 with changed target values. The means of the struc-
ture score show that in both conditions, participants
identified little more than one causal relation on av-
erage. Given the five possible relations, this is a low
value. The average number of PULSE events in the
first two rounds is also rather low3 .

For Block 1 the distributions of trials to criterion
were clearly deviating from a normal distribution in
both conditions (Figure 3). Local modes can be iden-
tified at 7 to 8 trials and at 12 to 13 trials. The most
frequent value in both conditions was 16, meaning that
the criterion was not reached. Due to the peculiar dis-
tributions, I calculated nonparametric statistical tests.
For all scenarios, the U-tests indicated no significant
differences between the dual vs. single task conditions
(Medicine 1.1: U = 689.5, p = .636, Medicine 1.2:
U = 703, p = .532). Comparing the medians (see Ta-
ble 1) shows that the median in the dual task condition
was even lower than in the single task condition. So,
Hypothesis 1.1 was not supported by the data.

For the analyses pertaining to Hypotheses 1.2 to 1.4,
six participants with missing structure scores were re-
moved from the sample (three in each condition), re-
sulting in n = 34 and n = 33 in the DT and ST con-
ditions, respectively.

With respect to Hypothesis 1.2, a t-test revealed
no significant difference in the structure score between
the ST and DT conditions (MST = 1.15, MDT = 1.24,
t = −0.18, p = .573, Cohen’s d = −0.048). Hence,
Hypothesis 1.2 was not supported by the data.

3I have also calculated an alternative measure of CPS perfor-
mance, based on goal deviations, which I have not reported. The
measure has a similarly peculiar distribution as the reported
measure and does not reflect goal attainment as well as the re-
ported measure. The results were qualitatively the same as for
trials to criterion.
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Table 1. Descriptive Statistics of dependent variables from Experiment 1.

single task dual task
M Mdn SD Range M Mdn SD Range

TTCa Med 1.1 12 4 to 16 11.5 4 to 16
TTC Med 1.2 6 2 to 16 4 2 to 16
TTC Med 2 4 3 to 16 4 3 to 13
StrucScore Med 1.1 1.15 2.18 -5 to 5 1.24 1.48 -2 to 4
PULSE Med 1.1 2.89 2.01 0 to 8 2.57 1.94 0 to 7

a TTC: trials to criterion, StrucScore: structure score – a measure of structural knowledge, PULSE: number of impulse events
in the first two rounds.

To test Hypothesis 1.3, I calculated Spearman’s rho
between the structure score and trials to criterion in
Medicine 1. For the whole sample, this results in
rho = −.247 (p = .044). In the ST and DT conditions,
I obtained rho = −.513 (p = .002), and rho = .020
(p = .913), respectively (zdiff = 2.08, p = .019).
Hence, Hypothesis 1.3 was supported. As expected,
the correlation is significantly larger in the ST condi-
tion.

Spearman’s rank correlations between the number of
PULSE inputs in the first two rounds and the struc-
ture score were rho = .371 (p = .033) in the ST condi-
tion and rho = −.070 (p = .696) in the DT condition
(zdiff = 1.72, p = .043), supporting Hypothesis 1.4a.

Hypothesis 1.4b was not supported by the data:
The correlations between PULSE and trials to crite-
rion were rho = −.328 (p = .062) in the ST condi-
tion and rho = −.153 (p = .388) in the DT condition
(zdiff = 0.68, p = .247).

Hypothesis 1.5 stated better performance of the
blocked condition in the far transfer problem. Al-
though the medians of trials to criterion in Medicine
2 do not differ much between the conditions, the ex-

Figure 3. Distributions of the number of trials to achieve the goal
criterion in the single task and dual task conditions. Sixteen means
that the target was not achieved in 15 rounds.

pected difference was significant. Participants in the
blocked condition solved that problem earlier than in
the spaced condition (U = 477.5, p=.047), so the hy-
pothesis is supported. However, the supposed reason
for that – a better acquisition of strategic knowledge
in the blocked condition – was not supported in ad-
ditional analyses: In Medicine 2, participants in the
blocked condition used the PULSE tactic only slightly
more than those in the spaced condition (M = 3.73
vs. M = 3.25, t = 1.00, one-sided p = .160, Cohen’s
d = 0.162).

Exploratory analyses

To analyze differences between the participants of
the study they were assigned to three categories:
“Sciences” (Chemistry, Physics, Biology, Mathemat-
ics, Engineering Sciences), “Economics” (Economics,
Law), and “Arts & Humanities” (History, Cultural
Studies, Languages, Social Sciences). Kruskal-Wallis
tests revealed significant effects of the participants’
subject of study on trials to criterion in all three prob-
lem solving blocks. Figure 4 shows boxplots of the re-
sults in Medicine 1.1 (Panel A) and Medicine 2 (Panel
B). We see that science students solved the problem
considerably faster than students of other fields of
study (Medicine 1.1: χ2 = 9.52, df = 2, p = .009,
Medicine 1.2: χ2 = 6.65, df = 2, p = .036, Medicine
2: χ2 = 8.48, df = 2, p=.014). This confirms similar
results from earlier studies (Schoppek, 2004; Schoppek
& Fischer, 2017).

To classify the strategies used in the source prob-
lem, I calculated the standard deviations for each in-
put variable across all 250 cycles of each round. This
allows judging how much a variable was varied by the
problem solver. Based on these indicators, three main
strategies and two marginal strategies4 were identified.

Strategy Alpha is defined by varying input variables
MedB and MedC (both SDs ≥ 0.7). The SD for MedA
may be zero because many participants keep this in-
put constant at a value of 45). Strategy Beta is de-
fined by keeping MedC relatively constant (SD < 0.7)
and using MedB to control Fontin (SD ≥ 0.7). Strat-
egy Gamma is defined the other way round: Keep-
ing MedB constant and using MedC for controlling
Fontin. The marginal strategies were “Minimal”, de-

4The name is due to the rare occurrence of those strategies.
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Figure 4. Boxplots of the number of trials needed to achieve the target in three areas of study (16 means that the target was not achieved
in 15 rounds). Left Panel: Medicine 1.1, Right Panel: Medicine 2.

fined by varying all input variables only slightly (all
SDs < 0.7), and “OnlyA”, defined by varying almost
entirely MedA (SD for MedA ≥ 0.7, all other SDs <
0.7). The marginal strategies were used in 2.1% of all
rounds.

I removed the first round of all participants from
the dataset, because this round was declared as explo-
ration round, and the participants were supposed to
vary all input variables by instruction. Of the remain-
ing 728 rounds, 77.5% were classified as Alpha, 7.7%
as Beta, and 12.8% as Gamma. The success rates of
the strategies were markedly different (see Table 2).
As expected, Strategy Beta was the most successful
(68% success rate).

To analyze the relations between strategy and suc-
cess (having reached the goals), I calculated a general-
ized linear mixed model with the three main strategies
and the participant as predictors and success in each
round as dependent variable. The analysis, which es-
timates the parameters of a multilevel logistic regres-
sion model, was calculated with the function glmer
from the R-package lme4 (Bates et al., 2015). Note
that in this analysis the entity at Level 1 is a round of
Dynamis2. Participants are located on Level 2. There-
fore, participants figure as predictor and the analysis
is based on n = 728 data points.

Strategy Alpha was used as the baseline, coded with
zero in the dummy variables. The marginal strate-
gies were omitted due to their rare occurrence. The
variance between participants was factored in by esti-
mating a random intercept for each participant. The
estimated parameters are to be interpreted as odds
(intercept) or odds ratios (predictors) on a log scale.
The estimated value for the intercept was −2.375
(z = −11.26, p < .001), meaning that it is signifi-
cantly more likely being not successful using Strategy
Alpha than being successful using any other strategy.
The log odds ratios for Strategies Beta and Gamma
were 3.452 (z = 8.57, p < .001) and 1.824 (z = 5.49,

p < .001), respectively. This means that the odds of
being successful using Strategy Beta are e3.452 = 31.6
times higher than the odds for any other strategy. For
Strategy Gamma this ratio is e1.824 = 6.2.

Discussion

Overall, Experiment 1 has not completely supported
the predictions of the standard model of CPS. The dy-
namic system Medicine 1 has turned out equally diffi-
cult in the single task (ST) and the dual task (DT) con-
ditions (Hyp. 1.1). Moreover, the participants in the
ST condition have not gained better structural knowl-
edge about the system (Hyp. 1.2). In a comparable
experiment, Hundertmark, Holt, Fischer, Said, & Fis-
cher (2015) also found a much smaller effect (η2 = .01)
of a cognitive load manipulation on system control
than they had expected. In retrospect, these hypothe-
ses might not have been well justified, because they
implicitly assumed that approaching the control task
with a greater amount of Type 2 processing would be
superior. This assumption can be doubted generally,
because the relation between approach and success is
moderated by factors such as expertise or cognitive
ability (Evans, 2012; Gigerenzer & Brighton, 2011;
Gobet & Chassy, 2009). In particular, Dynamis2 prob-
lems with their time pressure, their lack of a log of
input variations, and the analog user interface (slid-
ers and graphs) probably suggest a Type 1 approach
much more than conventional Dynamis applications,
featuring input logs, much fewer time steps, and little
time pressure.

Another reason why the expected differences have
not been found in Experiment 1 could be that the con-
curring tasks called for different subsystems of work-
ing memory (Baddeley, 2007), the sentence verification
task being clearly verbal, the Dynamis2 problem being
more visual-motor. In devising the hypotheses, I had
assumed an important role of the central executive for
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Table 2. Strategy use and associated success in two data sets. Proportions refer to individual rounds (each round of each participant was
counted).

Strategy
Alpha Beta Gamma minimal onlyA All

Experiment 1
Proportion 0.78 0.08 0.13 0.01 0.01 1
Rate of success 0.09 0.68 0.34 1 0.13 0.18

Experiment 2
Proportion 0.84 0.04 0.11 0.01 0.01 1
Rate of success 0.10 0.54 0.27 1 0.14 0.14

system control, for moving the attention between the
two tasks and for the decisions about the meaning of
the sentences. It might be that the sentence verifica-
tion task called for central executive processes far less
than expected. This surmise should be tested with
varied secondary tasks.

The predictions of the standard model about the
role of structural knowledge (Hyp. 1.3) and the
PULSE tactic (Hyp. 1.4) for controlling the system
have been confirmed, albeit the effect is due to the ST
condition only. Whereas the level of structural knowl-
edge was quite low in both conditions, the range was
much larger in the ST condition. The reason for this
pattern of results could be that only part of the par-
ticipants proceeded in accordance with the standard
model, that this group was larger in the ST condition,
and that this proceeding does not warrant success (as
indicated by the markedly negative minimum of the
structure score in the ST condition). This interpreta-
tion raises the question about the proceeding of the
other participants. I will get back to that question
below.

Lastly, the expectation that the longer experience
with the source problem in the blocked condition is
beneficial for the far transfer problem was confirmed
(Hyp. 1.5). As the participants cannot transfer struc-
tural knowledge to the new system (far transfer), this
effect must be due to other types of knowledge. How-
ever, the data did not support the supposed mediation
of the effect through more use of the PULSE tactic.

Experiment 2

In this Experiment, Dynamis2 was used for inducing
ego depletion (Baumeister, Vohs, & Tice, 2007) in the
context of a study about training self-control through
regular physical activity (Schoppek, in prep.). For the
present research, I report only the results related to
Dynamis2.

Participants, design, and hypotheses

Seventy-seven subjects from the same population as in
Experiment 1 participated in the experiment (students
of different majors at the University of Bayreuth, 48
female, 29 male). Participants worked on the same
problem as the source problem from Experiment 1 for
a maximum of 15 rounds. The sentence verification
task was also administered concurrently.

With the results of Experiment 2, the explorative re-
sults from Experiment 1 can be cross validated. There-
fore, the hypotheses for Experiment 2 were as follows:

Hypothesis 2.1: Science students solve the problem
in fewer rounds than students of other majors (partic-
ularly faster than students of arts and humanities).

Hypothesis 2.2: Strategy Beta is the most successful
strategy, followed by Strategy Gamma and Strategy
Alpha as least successful strategy.

The first hypothesis is not only based on the results
of Experiment 1, but also on earlier findings with Dy-
namis2 (Schoppek & Fischer, 2017) or a predecessor
system (Schoppek, 2004).

Results

Participants reached the goal criterion within 4 to 16
rounds (16 meaning they never reached it). The me-
dian was 13. These values are close to those from
Experiment 1 (see Table 1).

Experiment 2 confirmed the differences among the
students of the three categories of majors (Kruskal-
Wallis test, χ2 = 9.34, df = 2, p = .009). However,
an examination of the medians shows that the differ-
ences are due to the poor performance of the Arts &
Humanities students (Mdn=16). The Economics stu-
dents (Mdn=11) performed similarly to the Science
students (Mdn=11.5). The U-test comparing the com-
bined Science and Economics group with the Arts &
Humanities group was significant (U = 729, p = .002).

For cross validation of the strategy results, the same
analysis as in Experiment 1 was applied: A general-
ized linear mixed model with the three main strategies
and the participant as predictors and success in each
round as dependent variable. (Please recall that in this
analysis the entity at Level 1 is a single round. Partic-
ipants are located on Level 2). The present analysis is
based on n=806 data points.

The results were qualitatively the same as in Exper-
iment 1: The odds for the intercept (corresponding to
Strategy Alpha) were −2.316 (z = −11.64, p < .001).
Strategy Beta was the most successful of the main
strategies (log odds ratio = 2.630, z = 5.85, p < .001),
followed by Strategy Gamma (log odds ratio = 1.568,
z = 4.28, p < .001). Descriptive statistics for this
analysis are displayed in Table 2.
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Discussion

The effect of the subject of study on problem solving
performance has been replicated with respect to the
difference between the Science students and the Arts
& Humanities students (see Schoppek, 2004). How-
ever, the Economics students were as fast in solving
the problem as the Science students. The effect of
subject of study points again to the important role of
knowledge other than structural knowledge. Science
students (and probably Economics students, too) have
more experience with diagrams of quantitative gradi-
ents and with the notion of dynamic systems than stu-
dents of Arts & Humanities. Additionally, I have re-
ceived the impression that the relevance of controlling
dynamic systems for the participants’ selves matters.
In case of failure, arts students may well take com-
fort in thinking “this kind of stuff has never been my
cup of tea” – and disengage from the task. This is
much harder for science students, who probably feel
their subject-based self-esteem challenged in the face
of failure. This hypothesis should be investigated in
future studies. The assumed relatedness of systems of
the Dynamis type with certain topics in the sciences
is consistent with findings that problem solving in Mi-
croDYN correlates most closely with school grades in
math and science (Greiff et al., 2013; Greiff et al.,
2013). It is also in line with findings from PISA 2003
that math and science competence significantly con-
tribute to problem solving across 41 countries (Scherer
& Beckmann, 2014).

Experiment 2 has also replicated the role of the dif-
ferent strategies. In both experiments, the little effec-
tive strategies Alpha and Gamma prevailed (whereby
Strategy Alpha, characterized by consistently varying
two input variables, might not even be worthy of the
name “strategy”). This prevented many participants
from reaching the goals. Only in 4% (Exp. 1: 8%)
of all rounds, participants used the more sophisticated
Strategy Beta, which had a much higher rate of suc-
cess. This preference for self-evident but inadequately
simple strategies is a further instance of the tendency
to economize (Dörner, 1996).

General Discussion

We have enough evidence now that structural knowl-
edge is beneficial for controlling complex dynamic sys-
tems (Funke, 1993; Greiff et al., 2013; Schoppek & Fis-
cher, 2017), but also that by no means all participants
conform to the standard model (Fischer et al., 2012).
This also became apparent in a study using Micro-
DYN (Stadler, Hofer, & Greiff, 2020) where individual
differences in problem solving behavior were found in
participants who obtained the same CPS scores. In
the present experiments, many participants preferred
an intuitive approach, which is on average less success-
ful. So, one of the most important research questions
for the future is to investigate the conditions, under
which problem solvers switch from the “default mode”,
which is dominated by Type 1 processes, to effortful

thinking, which involves much Type 2 processing. This
question is not only relevant to problem solving, but
also to judgment and decision-making.

We can find one answer to that question in exist-
ing research: rewards. Although Kahneman, Slovic,
and Tversky (1982) have obtained their findings about
heuristic judgement despite rewarding their partici-
pants for correct answers (e.g., Kahneman & Tver-
sky, 1972), there is evidence from diverse areas that
attractive rewards motivate individuals to engage in
effortful control or thought. They instigate persons to
overcome ego depletion (Muraven & Slessareva, 2003),
they can markedly reduce ADHD symptoms in an ex-
perimental setting (Liddle et al., 2011), and they coun-
teract fatigue (Inzlicht & Berkman, 2015). The inter-
pretation about threatened self-esteem in science stu-
dents can also be subsumed under this account, albeit
the incentive is negative in that case. This is in line
with the statement by Inzlicht and Berkman (2015)
that “affirming some core value . . . similarly prevents
the reductions in self-control” (p.516).

We can investigate the potency of such mechanisms
in problem solving well with CDC tasks like Dynamis2.
Their complexity, dynamics, time scale, and interac-
tivity make such tasks more similar to real life require-
ments than the more artificial, highly standardized
and short system control items in the multiple complex
systems approach (Greiff et al., 2012; Neubert et al.,
2015). Future research needs to clarify the relations
among effortful thinking, its behavioral indicators, and
success. For instance, Kahneman (2011) described the
pupil reaction as indicator for Type 2 processing. In
the present study, I took the Strategy Beta as indicator
for Type 2 processing and Strategy Gamma for Type
1 processing. This provision as well as other indicators
should be validated further. Similarly, the relation be-
tween reasoning and success is not trivial. Kahneman,
Slovic, and Tversky (1982) have been criticized for
almost equating reasoning with normative solutions
(Gigerenzer & Brighton, 2011). With respect to this
problem, Evans (2012) stated that “normative correct-
ness cannot be a defining feature of Type 2 processing
because it is an externally imposed evaluation and not
intrinsic to definitions based upon explicit processing
through working memory" (p.123). Therefore, the re-
lation can be subject to empirical investigation. As in
other areas (Stanovich & West, 1999), one would ex-
pect an advantage of the “analytic approach” to CPS
that is moderated by individual differences in intelli-
gence (Greiff et al., 2013). However, even an approach
that is dominated by Type 2 processing can be auto-
mated with extensive practice and hence get less de-
pendent on cognitive ability (a phenomenon closely as-
sociated with the Elshout-Raaheim hypothesis, which
has recently been confirmed in a CPS study, Weise, et
al., 2020).

For making progress in understanding and predict-
ing CPS, we need a more general theory about problem
solving, or as Beckmann (2019) stated, “some ex ante
ideas are needed about both the real-life problem and
the laboratory task” (p.3). Models that are tailored
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to a narrow class of tasks, like the standard model of
CPS, are only helpful when they are embedded in a
more general theoretical framework, like the DP ap-
proach. To that end, I envision a theory of mental
states, which characterizes classes of states and speci-
fies the rules that govern the transitions among those
states. This description applies to a number of im-
portant and more or less successful theories: The Ru-
bicon model of action phases (Gollwitzer, 1990), the
flow theory (Csikszentmihalyi et al., 2014), or the re-
source model of self-control (Baumeister et al., 2007)
with its recent modifications by Inzlicht and Schme-
ichel (2012). For example, ego depletion is charac-
terized as a state in which persons are not willing
or not able to exert effortful control. Persons enter
this state when having spent effortful control for a
while, and exit it when consuming sugar or experi-
encing humor, amongst other things. Given these as-
sumptions, trying to reach the goals in a Dynamis2
scenario using an analytical approach, which involves
much Type 2 processing, can lead to ego depletion. On
the other hand, it is conceivable that participants are
getting so involved in the control task that they expe-
rience a state of flow. Csikszentmihalyi, Abuhamdeh,
and Nakamura (2014) characterize flow as “intense ex-
periential involvement in moment-to-moment activity.
Attention is fully invested in the task at hand, and
the person functions at his or her fullest capacity” (p.
214). This apparently involves Type 2 processing. To
my knowledge, it has not been investigated whether
flow is usually followed by ego depletion or not. As
the activities during a state of flow are not accompa-
nied by feelings of labor, I suppose it is not. From
a DP perspective, flow can be described as resulting
from a seamless interplay between a bird’s eye view
on the situation, which is maintained and handled by
Type 2 processing, and a broad array of potent Type
1 processes that are orchestrated through decisions on
the top level (Type 2). These are just a few exam-
ples of existing connection points that might enable
a unification of those theories in the future. I regard
such a unified theory of mental states as a convenient
framework for specific theories about problem solving
in dynamic and uncertain situations – also known as
CPS.

As mentioned earlier, effortful thinking does not
always generate better results than an intuitive ap-
proach; but in general, overcoming the tendency to
economize is desirable, not just in the laboratory, but
also in real life.
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