A Pyramidal Frustum Volume Algorithm in P.Math. Leaf C Recto

Julia Lougovaya
Heidelberg: Propylaeum, 2022
cc
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-NCSA 4.0)

DOI: https://doi.org/10.48631/pylon.2022.2.92970

[^0]Mathematical problem c1 in P．Math．（Oxyrhynchos？350－375；TM 〕 92734）was interpreted in the ed．pr．as being concerned with finding the volume of a quadrangular prism，an interpretation that accounted well for the preserved computations．${ }^{1}$ The statement of the problem，however，was far from clear．Here is how it appears in the edition：

$$
\begin{aligned}
& \xi \dot{v} \lambda \omega v v \varepsilon ́ o v \pi \eta \chi[\omega ิ \vee \kappa \overline{\kappa \eta}-c a . ?-]
\end{aligned}
$$

$$
\begin{aligned}
& {[\delta \alpha] \kappa \tau v ́ \lambda \omega v \bar{\imath} \beta, \pi \alpha ́ \chi \circ \varsigma \mu \varepsilon ̀ v \alpha \pi \frac{1}{\alpha} \rho ̣!~ \delta \alpha \kappa \tau \cup ̣[\lambda \omega v]} \\
& {\left[\bar{\eta}_{\text {..... }}\right] \varphi \text { и́ } \lambda \lambda \omega v \delta \alpha \kappa \tau ט ́ \lambda \omega v \bar{\zeta} . \varepsilon \dot{v} \rho[\varepsilon i v v]} \\
& 5 \text { [6-7] đọ̀ そúnov. }
\end{aligned}
$$

A fresh beam？［28］cubits ．．．
．．． 16 fingers，and the ．．．
12 fingers，thickness ．．．［8］fingers
．．．leaves？ 6 fingers．To find
5 the beam？

The editors were puzzled by the reference to＇leaves＇in line 4 （ $\varphi v ́ \lambda \lambda \omega v$ ）and the incomprehensible $\alpha \pi \rho \rho!$ in line 3 ．The latter characters in fact are very clearly visible，while the traces in line 2 printed in the edition as．［．．］．ρ ！ot suggest that something similar was written there，too（Fig．1）．The appearance of the sequence $\alpha \pi \rho \rho \imath$ along with $\varphi v ́ \lambda \lambda \omega v$ in the description of a piece of timber makes it virtually
 as opposed to its upper part，from the foliage，$\dot{\alpha} \pi \grave{\partial} \varphi v ́ v \lambda \lambda \omega v$ ．The terminology comes up in a passage of Theophrastus in which he explains how wood should be chosen for sockets and pivots（HP 5．3．7）：
 oi $\tau \varepsilon ́ \kappa \tau о v \varepsilon \varsigma$ тò $\alpha \pi$ ò $\tau 0 \hat{v} \varphi v ́ \lambda \lambda$ ov τ ò $\alpha ้ v \omega$ ，＂They make them（sc．hinges）by reversing the wood＇from the root＇and＇from the foliage＇－by＇wood from the foliage＇they mean the upper part wood．＂

[^1]

Fig. 1. P.Math. folio C (recto).
§3 That the terminology in the statement of the problem c1 indeed refers to the 'lower' and 'upper' ends of the original tree is further supported by the measurements of the timber because the dimensions of the cross-section 'from the root' (16 by 8 fingers) are larger than those 'from the foliage' (12 by 6 fingers).

References to the lower and upper ends of the timber in the statement of the problem, however, entail a reconsideration of the shape of the object and of the algorithm used for computing its volume. What is described in the text is not a quadrangular prism, but a truncated pyramid with a rectangular base 18 by 8 fingers, a rectangular top 12 by 6 fingers, and a 'length', which is presumably its height, of 28 cubits. It can be illustrated with the following diagram (Fig. 2), in which no attempt is made to render the height commensurate with the dimensions of the base and of the top (one should imagine the figure in the diagram stretched out along its vertical dimension so that its height is about 40 times its width at the base):

Fig. 2. Reconstruction, not to scale, of the object in problem c 1.
§4 The volume of this truncated pyramid is computed as if it were a rectangular prism of the given height (h) with the sides of its bottom face equaling the average of the corresponding sides of the base and of the top: $V=\frac{\left(a_{1}+a_{2}\right)}{2} \times \frac{\left(b_{1}+b_{2}\right)}{2} \times h$
\$5 The algorithm, which produces an approximation and underestimates the volume of the object, is used in pseudo-Heron, Stereometrica 25 (Heiberg) to determine the volume of a $\sigma \varphi \eta v i ́ \sigma \kappa \circ \varsigma$, which has the shape of a truncated pyramid. The approximation formula might be of ancient origin, ${ }^{2}$ but P.Math. seems to be its first attestation in the Greek papyrological evidence, and thus we add it to Bagnall and Jones' collection of algorithms attested in Greek papyri.
§6 S6C. Pyramidal frustum volume algorithm C (approximate). Given a pyramidal frustum having rectangular base with sides a_{1} and a_{2}, rectangular top with sides b_{1} and b_{2}, and height h, find the volume V :
(i) Add a_{1} and a_{2}.
(ii) Divide the sum by 2 .
(iii) Add b_{1} and b_{2}.
(iv) Divide the sum by 2 .

[^2](v) Multiply the quotient by the quotient obtained in (ii).
(vi) $\quad V$ is the product multiplied by h
$$
V=\frac{\left(a_{1}+a_{2}\right)}{2} \times \frac{\left(b_{1}+b_{2}\right)}{2} \times h
$$

Used in: P.Math. c1.

Fig. 3. Diagram for algorithm S6C.
§7 The computations of the volume in the solution of the problem c1 are followed by the conversion of the product-the interim result-to volumetric cubits and fingers. The conversion factors 288 and 12 indicate that the unnamed units in which the final result is expressed are the 3-palm cubit and its fingers. ${ }^{3}$
§8 There remains a question of the description of the wood as $\xi v i \lambda o v v \varepsilon ́ o v$ in the statement of the problem. The adjective might simply mean 'young', designating timber that came from a younger as opposed to an older tree. But it is tempting to see in véov a misspelling of veîov, which Aelius Herodianus defines
 Hesychius and Photius use the word in the plural and explain it more vaguely as ship-timber (Hesych.,
 $\tau \alpha ̀ \varepsilon i \varsigma \kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \eta ̀ v v \varepsilon \omega ิ v \xi v ́ \lambda \alpha$, 'wood for building ships'). The change $\varepsilon \iota>\varepsilon$ is relatively common, especially before the back vowel ' o ', and occurs elsewhere in P.Math. ${ }^{4}$ If this is the word meant, the object in the problem is ship-timber, and since it is rectangular in cross-section, perhaps the keel or floor of the hull was envisaged rather than a mast.

C recto, lines 1-13 (Problem c1)

$$
\begin{aligned}
& \xi \dot{v} \lambda \omega v \text { véov } \pi \eta \chi[\hat{\omega} \nu \overline{\kappa \eta}, \pi \lambda \alpha ́ \tau o \varsigma ~ \mu \varepsilon ̀ v]
\end{aligned}
$$

$$
\begin{aligned}
& \dot{[\delta \alpha] \kappa \tau ט \dot{\lambda} \omega v} \overline{\mathrm{\imath}}, \pi \alpha \dot{\alpha} \chi \circ \varsigma \mu \dot{\varepsilon} v \dot{\rho} \iota<\zeta->\delta \alpha \kappa \tau \cup[\lambda \omega v]
\end{aligned}
$$

[$\tau i] \theta$ о.

[^3]

'A piece of ship (?) timber, 28 cubits; width from the roots 16 fingers, from the foliage 12 fingers; thickness from the roots 8 fingers, from the foliage 6 fingers. Find [how big?] is the timber. I do it this way: I add the width, 16 and 12 , the result is 28 , half of which is 14 . I add the thickness, 6 and 8 , the result is 14, half of which is 7 ; (multiply) by 14, the result is 98 ; (multiply) by the length of 28 cubits, the result is 2,744 . This I divide by 288 and the remainder into fingers, (divide by) 12 , the result is 9 and $122 / 3$ fingers. So it holds for similar cases. Diagram.'
 its horizontal protrudes slightly to the left. It is certainly not a zeta, cf. also 3 n .
§11 $3 \dot{\alpha} \pi$ ò $\dot{\rho}<\zeta \zeta->\delta \alpha \kappa \tau \cup 匕[\lambda \omega v]$: the delta of $\delta \alpha \kappa \tau \cup \cup[\lambda \omega v]$ is corrected from what seems to have been a gamma; perhaps the scribe started writing $\dot{\rho} \gamma-$, as in line 2 , but then corrected the gamma to the delta of the subsequent word. There seems to be no sign of an abbreviation, and the phonetic process that could have produced the interchange of γ (or τ) with ζ is not immediately clear, yet it is hardly possible that a different word but $\mathfrak{\rho i ́ h} \eta$, in whatever form, was meant here and in line 2.

4-5 One would expect عúp\&iv at the end of line 4 to be followed by qò $\sigma \tau \varepsilon \rho \varepsilon o ̀ v ~ \tau o v ̂ ~ \xi u ́ \lambda o v, ~ c f . ~ t h e ~$
 'find the volume', or in similar problems in Didymus, Mensurae marmorum ac lignorum 40 and 41 (Heiberg), \&úp\&iv aủtov̂ tò $\sigma \tau \varepsilon \rho \varepsilon o ́ v$, 'to find its volume'. That tò gúzov stands in the nominative and not the genitive, would not be a problem in P.Math., which has multiple instances of the wrong usage of cases, ${ }^{5}$ but tò $\sigma \tau \varepsilon \rho \varepsilon o{ }^{2} v$ is certainly too long for the lacuna. Two possibilities suggest themselves:

 in problems of this type in P.Math. (that is, in a3, b5, c1 and g4), it is likely that π ó $\sigma \omega v$ would not be followed by the word designating units either.
$7\{\overline{\}}\}$: I follow the editors in printing and excising the iota, although the squiggle to the left of the stigma does not really look like an iota. It could be that the writer initially miscopied from his original (cf. the omicron in tó earlier in the line, which clearly was first written as a beta with a numeral

[^4]overstroke). For example, he might have begun to write kappa before switching to stigma, but without caring to delete the left vertical of the kappa. Whatever its genesis, this stroke ought to be excised.

Bibliography

\checkmark Bagnall, R.S. and Jones, A. (2019) Mathematics, Metrology, and Model Contracts. A Codex from Late Antique Business Education (P.Math.). New York.
\longleftarrow Gignac, F.T. (1976) A Grammar of the Greek Papyri of the Roman and Byzantine Periods. I. Phonology. Milano.
Ⓛougovaya, J. (2022) "On Cubic and Other Volumetric Cubits and Fingers," Pylon 1.
\checkmark Vogel, K. (1930) "The Truncated Pyramid in Egyptian Mathematics," JEA 16: 242-249.

Lougovaya, Julia

GND: © https://d-nb.info/gnd/1058244469
ORCID: © https://orcid.org/0000-0001-8099-5930
Universität Heidelberg
lougovaya@uni-heidelberg.de

[^0]: Citation:
 J. Lougovaya, "A Pyramidal Frustum Volume Algorithm in P.Math.

 Leaf C Recto," Pylon 2 (2022). DOI: https://doi.org/10.48631/ pylon.2022.2.92970.

[^1]: 1 I am grateful to Alexander Jones for commenting on a draft of this paper and to both editors of P．Math．for kindly sharing the image of the relevant codex page with me．I also appreciate the permission to reproduce leaf C recto of the codex granted by the owner of the ＇Archimedes Palimpsest＇．The diagrams in Fig． 2 and 3 are drawn by Jannis Schramm．

[^2]: 2 For approximation formulae used to compute the volume of a truncated pyramid and a conic frustum, see \measuredangle Vogel 1930. Note that an algorithm similar to the one for the volume of a truncated pyramid is used in P.Math. problem n 1 for the volume of a conic frustum, which is computed as if it were a cylinder with the diameter equaling the average of the lower and upper diameters (S3A), cf. ce Bagnall and Jones 2019: 42-43.

[^3]: 3 For volume cubits of different sizes used for expressing volume of wood and for computation of volume, cf. © Lougovaya 2022.
 4 Cf. © Gignac 1976:257, Bagnall and Jones (2019):12.

[^4]: 5 Bagnall and Jones 2019: 14 provide a useful list of wrongly used cases and other syntactical flaws in the codex.

