The FEniCS Project Version 1.5

Identifiers (Article)

Abstract

The FEniCS Project is a collaborative project for the development of
innovative concepts and tools for automated scientific computing,
with a particular focus on the solution of differential equations by
finite element methods. The FEniCS Projects software consists of a
collection of interoperable software components, including DOLFIN,
FFC, FIAT, Instant, UFC, UFL, and mshr. This note describes the new
features and changes introduced in the release of FEniCS
version 1.5.

Statistics

loading

References

D. N. Arnold and A. Logg. Periodic table of the finite elements. SIAM News, 2014.

D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques,

and applications. Acta numerica, 15:1–155, 2006.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014a. URL http://www.mcs.anl.gov/petsc.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2014b. URL http://www.mcs.anl.gov/petsc.

Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw., 35(3):22:1–22:14, Oct. 2008. ISSN 0098-3500. doi: 10.1145/1391989.1391995. URL http://doi.acm.org/10.1145/ 1391989.1391995.

C. Chevalier and F. Pellegrini. Pt-scotch: A tool for efficient parallel graph ordering. In 4th International Workshop on Parallel Matrix Algorithms and Applications (PMAA’06), IRISA, Rennes, France, Sept. 2006.

L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. Parallel distributed computing using python. Advances in Water Resources, 34(9):1124 – 1139, 2011. ISSN 0309-1708. doi: http://dx.doi.org/10. 1016/j.advwatres.2011.04.013. URL http://www.sciencedirect.com/science/article/pii/ S0309170811000777. New Computational Methods and Software Tools.

T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196–199, June 2004. ISSN 0098-3500. doi: 10.1145/992200.992206. URL http://doi.acm.org/10.1145/992200.992206.

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2):13:1–13:15, June 2007. URL http://doi.acm.org/10.1145/1236463.1236468.

T. Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic

Library, 6.0.0 edition, 2014. http://gmplib.org/.

G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2015.

P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–321, Jan. 2002.

V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the trilinos project. ACM Trans. Math. Softw., 31(3):397–423, 2005. ISSN 0098-3500. doi: http://doi.acm.org/10.1145/1089014.1089021.

A. Johansson, M. G. Larson, and A. Logg. High order cut finite element methods for the Stokes problem. http://arxiv.org/abs/1505.00372, 2015.

G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis, 2009.

A. Plaza and G. Carey. Local refinement of simplicial grids based on the skeleton. Applied Numerical Mathematics, 32:195–218, 2000.

C. N. Richardson and G. N. Wells. Parallel scaling of DOLFIN on ARCHER. figshare.com, http://figshare.com/articles/Parallel_scaling_of_DOLFIN_on_ARCHER/1304537, 2015. URL http://dx.doi.org/10.6084/m9.figshare.1304537.

S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng, 25(4):389–392, Jul 1978. doi: 10.1109/TBME.1978.326270. URL http://dx. doi.org/10.1109/TBME.1978.326270.

B. Schling. The Boost C++ Libraries. XML Press, 2011. ISBN 0982219199, 9780982219195.

H. Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 41 (2):11:1–11:36, Feb. 2015. ISSN 0098-3500. doi: 10.1145/2629697. URL http://doi.acm.org/ 10.1145/2629697.

J. Sundnes, R. Artebrant, O. Skavhaug, and A. Tveito. A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans Biomed Eng, 56(10):2546–2548, Oct 2009. doi: 10.1109/TBME.2009.2014739. URL http://dx.doi.org/10.1109/TBME.2009.2014739.

SymPy Development Team. SymPy: Python library for symbolic mathematics, 2014. URL http: //www.sympy.org.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition, 2015. URL http://doc.cgal.org/4.6/Manual/packages.html.

The HDF Group. Hierarchical data format, version 5, 2015. http://www.hdfgroup.org/HDF5/.

S. van der Walt, S. Colbert, and G. Varoquaux. The NumPy Array: A structure for efficient numerical computation. Computing in Science Engineering, 13(2):22–30, March 2011. ISSN 1521- 9615.

Published
2015-12-07
Language
en
Academic discipline and sub-disciplines
scientific computing, mathematics, computer science