The deal.II library, Version 8.3

  • Wolfgang Bangerth (Author)
    Department of Mathematics Texas A&M University
  • Timo Heister (Author)
    Mathematical Sciences, O-110 Martin Hall. Clemson University. Clemson, SC 29634, USA
  • Luca Heltai (Author)
    SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
  • Guido Kanschat (Author)
    Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
    http://orcid.org/0000-0003-1687-7328
  • Martin Kronbichler (Author)
    Institute for Computational Mechanics, Technische Universität München, Boltzmannstr.15, 85748 Garching b. München, Germany
  • Matthias Maier (Author)
    School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA
  • Bruno Turcksin (Author)
    Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Identifiers (Article)

Abstract

This paper provides an overview of the new features of the finite element
library deal.II version 8.3.

Statistics

loading

References

M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, 1965.

P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and

unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184:501–520, 2000.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal

solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-

tions, 23(1):15–41, 2001.

P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the

parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.

Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc

users manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory,

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.

Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc

Web page. http://www.mcs.anl.gov/petsc, 2014.

W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for

massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38:14/1–28,

W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose object oriented

finite element library. ACM Trans. Math. Softw., 33(4), 2007.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and

T. D. Young. The deal.II library, version 8.0. arXiv preprint http://arxiv.org/abs/1312.

v3, 2013.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and

T. D. Young. The deal.II library, version 8.1. arXiv preprint http://arxiv.org/abs/1312.

v4, 2013.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and

T. D. Young. The deal.II library, version 8.2. Archive of Numerical Software, 3, 2015.

W. Bangerth and G. Kanschat. Concepts for object-oriented finite element software – the

deal.II library. Preprint 1999-43, SFB 359, Heidelberg, 1999.

W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite element

software. ACM Trans. Math. Softw., 36(1):4/1–4/31, 2009.

C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive

mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.

J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD

and FEA. John Wiley & Sons Inc, 2009.

T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method.

ACM Trans. Math. Softw., 30:196–199, 2004.

A. DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved

manifolds with deal.II. Technical Report 42/2009/M, SISSA, 2009.

N. Giuliani, A. Mola, L. Heltai, and L. Formaggia. FEM SUPG stabilisation of mixed isopara-

metric BEMs: application to linearised free surface flows. Engineering Analysis with Boundary

Elements, 59:8–22, 2015.

L. Heltai and A. Mola. Towards the Integration of CAD and FEM using open source libraries:

a Collection of deal.II Manifold Wrappers for the OpenCASCADE Library. Technical report,

SISSA, 2015. Submitted.

V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the

solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,

K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,

J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM

Trans. Math. Softw., 31:397–423, 2005.

M. A. Heroux et al. Trilinos web page, 2014. http://trilinos.sandia.gov.

B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H 1 - and

H curl -conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095–2114,

G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.

Comput. & Struct., 82(28):2437–2445, 2004.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element

operator application. Comput. Fluids, 63:135–147, 2012.

J. C. Lachat and J. O. Watson. Effective numerical treatment of boundary integral equations:

A formulation for three-dimensional elastostatics. International Journal for Numerical Methods

in Engineering, 10(5):991–1005, 1976.

R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-scale

eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.

Y. Maday, A. Patera, and E. Rønquist. A well-posed optimal spectral element approximation

for the stokes problem. Technical Report 87-47, ICASE, Hampton, VA, 1987.

MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://graal.ens-lyon.fr/MUMPS/.

muparser: Fast Math Parser Library. http://muparser.beltoforion.de/.

OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation. http://www.opencascade.org/.

J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

R. Rew and G. Davis. NetCDF: an interface for scientific data access. Computer Graphics and

Applications, IEEE, 10(4):76–82, 1990.

J. Telles. A self-adaptive co-ordinate transformation for efficient numerical evaluation of

general boundary element integrals. International Journal for Numerical Methods in Engineering,

(5), 2005.

The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN,

http://www.hdfgroup.org/HDF5/.

Published
2016-02-27
Language
en
Academic discipline and sub-disciplines
Computational science
Contributor or sponsoring agency
NSF
Keywords
Finite element software