Image Synthesis as a Method of Knowledge Production in Art History
Identifiers (Article)
Abstract
Digital images enable us to virtually assemble, group, and rearrange works of art as image datasets. The highly complex similarities and dissimilarities between data points in an image dataset can be analyzed. Understanding the meaning of computationally defined similarities and dissimilarities, however, requires disentangling the representations learned by the computer in the process. By utilizing generative methods from deep learning, we aim to design a new methodology for the analysis and interpretation of digital images. Building on refined methods of disentanglement from computer science, our goal is to establish the synthetic image as a novel means of knowledge production in art history.
Statistics
Issue
Section
Language
English
Keywords
machine learning, computer vision, deep learning, image synthesis, artistic style
How to Cite
Wright, Matthias, and Björn Ommer. 2021. “Image Synthesis As a Method of Knowledge Production in Art History”. International Journal for Digital Art History, no. 8 (October):154-61. https://doi.org/10.11588/dah.2021.E1.83934.