Illuminating divergence in perceptions in natural resource management: A case for the investigation of the heterogeneity in mental models

  • Karlijn van den Broek (Author)
    University of Heidelberg

Identifiers (Article)

Abstract

Much research has been dedicated to map mental models of natural resources to aid effective management of the natural resource. The variety of approaches result in a variety of outputs, but most research in this domain reports mental models that have been aggregated across participants. This results in a misrepresentation of mental models as it overlooks valuable variance in understanding between individuals that could be key in effective decision-making. This paper illustrates such variance in mental models through a case study that explored mental models of the Nile perch fisheries at Lake Victoria. This case study suggests that divergence in mental model present a barrier to effective management of the fisheries. Hence, this paper proposes avenues to further investigate and report the heterogeneity of mental models between and within individuals. Such research uncovers divergence in understanding, which can be addressed to aid decision-making in natural resource management.

Statistics

loading

References

Abel, N., Ross, H., & Walker, P. (1998). Mental models in rangeland research, communication and management. The Rangeland Journal, 20(1), 77–91. doi:10.1071/rj9980077

Amelung, D., Fischer, H., Kruse, L., & Sauerborn, R. (2016). Defogging climate change communication: How cognitive research an promote effective climate communication. Frontiers in Psychology, 7(1340), 1–4. doi:10.3389/fpsyg.2016.01340

Blickensderfer, E., Cannon-Bowers, J. A., & Salas, E. (1997). Training teams to self-correct: An empirical investigation. In 12th Annual Meeting of the Society of Industrial and Organizational Psychology. St. Louis, MO.

Bostrom, A. (2016). Mental models and risk perceptions related to climate change. Oxford Research Encyclopedia of Climate Science, 1–31. doi:10.1093/acrefore/9780190228620.013.303

Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine ecology progress series, 210, 223–253. doi:10.3354/meps210223

Denzau, A. T., & North, D. C. (1994). Shared mental models: Ideologies and institutions. Kyklos, 47(1), 3–31. doi:10.1111/j.1467-6435.1994.tb02246.x

Downing, A. S., Van Nes, E. H., Balirwa, J. S., Beuving, J., Bwathondi, P., Chapman, L. J., . . . Mooij, W. M. (2014). Coupled human and natural system dynamics as key to the sustainability of Lake Victoria’s Ecosystem services. Ecology and Society, 19(4): 31. doi:10.5751/ES-06965-190431

Dutt, V., & Gonzalez, C. (2012). Decisions from experience reduce misconceptions about climate change. Journal of Environmental Psychology, 32(1), 19–29. doi:10.1016/j.jenvp.2011.10.003

Etienne, M., du Toit, D. R., & Pollard, S. (2011). ARDI: A co-construction method for participatory modeling in natural resources management. Ecology and Society, 16(1): 44. doi:10.5751/es-03748-160144

Findlater, K. M., Donner, S. D., Satterfield, T., & Kandlikar, M. (2018). Integration anxiety: The cognitive isolation of climate change. Global Environmental Change, 50(September 2017), 178–189. doi:10.1016/j.gloenvcha.2018.02.010

Garavito-Bermúdez, D. (2018). Learning ecosystem complexity: a study on small-scale fishers’ ecological knowledge generation. Environmental Education Research, 24(4), 625–626. doi:10.1080/13504622.2016.1269877

Garavito-Bermúdez, D., Lundholm, C., & Crona, B. (2016). Linking a conceptual framework on systems thinking with experiential knowledge. Environmental Education Research, 22(1), 89–110. doi:10.1080/13504622.2014.936307

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62(1), 451–482. doi:10.1146/annurev-psych-120709-145346

Gray, S. A., Gray, S., de Kok, J. L., Helfgott, A. E. R., O’Dwyer, B., Jordan, R., & Nyaki, A. (2015). Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecology and Society, 20(2): 11. doi:10.5751/ES-07396-200211

Gray, S., Chan, A., Clark, D., & Jordan, R. (2012). Modeling the integration of stakeholder knowledge in social – ecological decision-making: Benefits and limitations to knowledge diversity. Ecological Modelling, 229, 88–96. doi:10.1016/j.ecolmodel.2011.09.011

Gray, S., Hilsberg, J., McFall, A., & Arlinghaus, R. (2015). The structure and function of angler mental models about fish population ecology: The influence of specialization and target species. Journal of Outdoor Recreation and Tourism, 12, 1–13. doi:10.1016/j.jort.2015.09.001

Gurtner, A., Tschan, F., Semmer, N. K., & Nägele, C. (2007). Getting groups to develop good strategies: Effects of reflexivity interventions on team process, team performance, and shared mental models. Organizational Behavior and Human Decision Processes, 102(2), 127–142. doi:10.1016/j.obhdp.2006.05.002

Halbrendt, J., Gray, S. A., Crow, S., Radovich, T., Kimura, A. H., & Tamang, B. B. (2014). Differences in farmer and expert beliefs and the perceived impacts of conservation agriculture. Global Environmental Change, 28(1), 50–62. doi:10.1016/j.gloenvcha.2014.05.001

Henly-Shepard, S., Gray, S. A., & Cox, L. J. (2015). The use of participatory modeling to promote social learning and facilitate community disaster planning. Environmental Science and Policy, 45, 109–122. doi:10.1016/j.envsci.2014.10.004

Hobbs, B. F., Ludsin, S. A., Knight, R. L., Ryan, P. A., Ciborowski, J. J. H., & Ciborowski, J. A. N. J. H. (2016). Fuzzy cognitive mapping as a tool to define management objectives for complex ecosystems. Ecological Applications, 12(5), 1548–1565. doi:10.2307/3099990

Hoffman, M., Lubell, M., & Hillis, V. (2014). Linking knowledge and action through mental models of sustainable agriculture. Proceedings of the National Academy of Sciences, 111(36), 13016–13021. doi:10.1073/pnas.1400435111

Janssen, M. A. (2001). An exploratory integrated model to assess management of lake eutrophication. Ecological Modelling, 140(1–2), 111–124. doi:10.1016/S0304-3800(01)00260-5

Jones, N. A., Ross, H., Lynam, T., & Perez, P. (2014). Eliciting mental models: A comparison of interview procedures in the context of natural resource management. Ecology and Society, 19(1): 13. doi:10.5751/ES-06248-190113

Kearney, A. R., Bradley, G., Kaplan, R., & Kaplan, S. (1999). Stakeholder perspectives on appropriate forest management in the Pacific Northwest. Forest Science, 45(1), 62–73.

Kolkman, M. J., Kok, M., & van der Veen, A. (2005). Mental model mapping as a new tool to analyse the use of information in decision-making in integrated water management. Physics and Chemistry of the Earth, 30(4–5 SPEC. ISS.), 317– 332. doi:10.1016/j.pce.2005.01.002

Kumar, M., & Dutt, V. (2018). Experience in a climate microworld: Influence of surface and structure learning, problem difficulty, and decision aids in reducing stock-flow misconceptions. Frontiers in Psychology, 9(MAR), 1–19. doi:10.3389/fpsyg.2018.00299

Leiserowitz, A., Smith, N., & Marlon, J. R. (2010). Americans’ knowledge of climate change. Yale project on climate change communication. Retrieved from http://environment.yale.edu/climate/files/ClimateChangeKnowledge2010.pdf%5Cnpapers3://publication/uuid/230CA706-26C2-4156-8133-1AC9E7701E6A

Li, O., Gray, S. A., & Sutton, S. G. (2016). Mapping recreational fishers’ informal learning of scientific information using a fuzzy cognitive mapping approach to mental modelling. Fisheries Management and Ecology, 23(3–4), 315–329. doi:10.1111/fme.12174

Lynam, T., Mathevet, R., Etienne, M., Stone-Jovicich, S., Leitch, A., Jones, N., . . . Perez, P. (2012). Waypoints on a journey of discovery: Mental models in human- environment interactions. Ecology and Society, 17(3): 23. doi:10.5751/ES-05118-170323

Marks, M. A., Zaccaro, S. J., & Mathieu, J. E. (2000). Performance implications of leader briefings and team-interaction training for team adaptation to novel environments. Journal of Applied Psychology, 85(6), 971. doi:10.1037//0021-9010.85.6.971

Marks, M. A., Sabella, M. J., Burke, C. S., & Zaccaro, S. J. (2002). The impact of cross-training on team effectiveness. Journal of Applied Psychology, 87(1), 3–13. doi:10.1037/0021-9010.87.1.3

Mathevet, R., Etienne, M., Lynam, T., & Calvet, C. (2011). Water management in the Camargue biosphere reserve: Insights from comparative mental models analysis. Ecology and Society, 16(1): 43. doi:10.5751/es-04007-160143

Mathieu, J. E., Rapp, T. L., Maynard, M. T., & Mangos, P. M. (2010). Interactive effects of team and task shared mental models as related to air traffic controllers’ collective efficacy and effectiveness. Human Performance, 23(1), 22–40. doi:10.1080/08959280903400150

Otto-Banaszak, I., Matczak, P., Wesseler, J., & Wechsung, F. (2011). Different perceptions of adaptation to climate change: A mental model approach applied to the evidence from expert interviews. Regional Environmental Change, 11(2), 217–228. doi:10.1007/s10113-010-0144-2

Özesmi, U., & Özesmi, S. (2003). A participatory approach to ecosystem conservation: Fuzzy cognitive maps and stakeholder group analysis in Uluabat Lake, Turkey. Environmental Management, 31(4), 518–531. doi:10.1007/s00267-002-2841-1

Özesmi, U., & Özesmi, S. L. (2004). Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecological modelling, 176(1–2), 43–64. doi:10.1016/j.ecolmodel.2003.10.027

Radomski, P. J., & Goeman, T. J. (1996). Decision making and modeling in freshwater sport-fisheries management. Fisheries, 21(12), 14–21. doi:10.1577/1548-8446(1996)021<0014:DMAMIF>2.0.CO;2

Rouse, W., & Morris, N. (1986). On Looking into the Black Box: Prospects and Limits in the Search for Mental Models. Psychological Bulletin, 100(3), 349–363. doi:10.1037//0033-2909.100.3.349

Sterman, J. D. (2008). Risk communication on climate: mental models and mass balance. Science, 322(5901), 532–533. doi:10.1126/science.1162574

Tikkanen, J., Isokääntä, T., Pykäläinen, J., & Leskinen, P. (2006). Applying cognitive mapping approach to explore the objective-structure of forest owners in a Northern Finnish case area. Forest Policy and Economics, 9(2), 139–152. doi:10.1016/j.forpol.2005.04.001

Tschakert, P., & Sagoe, R. (2009). Mental Models: understanding the causes and consequences of climate change. In Communitybased adaptation to climate change (pp. 154–159). Retrieved from http://www.iadb.org/intal/intalcdi/PE/2010/04833.pdf#page=156

van den Broek, K., Bolderdijk, J. W., & Steg, L. (2017). Individual differences in values determine the relative persuasiveness of biospheric, economic and combined appeals. Journal of Environmental Psychology, 53, 145–156. 145–156. doi:10.1016/j.jenvp.2017.07.009

Vanwindekens, F. M., Baret, P. V., & Stilmant, D. (2014). A new approach for comparing and categorizing farmers’ systems of practice based on cognitive mapping and graph theory indicators. Ecological Modelling, 274, 1–11. doi:10.1016/j.ecolmodel.2013.11.026

Veldhuyzen, W., & Stassen, H. G. (1977). The internal model concept: An application to modeling human control of large ships. Human Factors, 19(4), 367–380. doi:10.1177/001872087701900405

Waller, M. J., Gupta, N., & Giambatista, R. C. (2004). Effects of adaptive behaviors and shared mental models on control crew performance. Management Science, 50(11), 1534–1544. doi:10.1287/mnsc.1040.0210

Webber, S. S., Chen, G., Payne, S. C., Marsh, S. M., & Zaccaro, S. J. (2000). Enhancing team mental model measurement with performance appraisal practices. Organizational Research Methods, 3(4), 307–322. doi:10.1177/109442810034001

Weber, E. U. (2006). Experience-based and description-based perceptions of long-term risk: Why global warming does not scare us (yet). Climatic Change, 77(1–2), 103–120. doi:10.1007/s10584-006-9060-3

Published
2018-12-07
Language
en
Contributor or sponsoring agency
Bundesministerium für Bildung und Forschung
Type, method or approach
position paper
Keywords
cognitive maps, decision-making, divergent perceptions, fisheries, Lake Victoria, method, mental models, natural resource management, stakeholders, system understanding